

ELIZADE UNIVERSITY ILARA-MOKIN ONDO STATE

FACULTY: BASIC AND APPLIED SCIENCES

DEPARTMENT: MATHEMATICS AND COMPUTER SCIENCE

2nd SEMESTER EXAMINATION 2018 / 2019 ACADEMIC SESSION

COURSE CODE: CSC 420

COURSE TITLE: Theory of Automata and Computing

COURSE LEADER: Dr. K. Agbele

DURATION: 2 Hours

HOD's SIGNATURE

Delatella

INSTRUCTION:

Candidates should answer any THREE (3) Questions.

Students are warned that possession of any unauthorized materials in an examination is a serious assessment offence

Students are permitted to use ONLY a scientific calculator.

1(a) What is an automaton? List and explain the types of Automaton.

(b) Explain the following components of a Finite Machine (i) Input (ii) Return (iii) State (iv)

Start State (v) Accepting State (vi) Rejecting State (viii) Dead State (viii) Transition

(c) When is a string accepted by a Non-Finite State Automaton (NFA)?

(d) List five applications of Finite Machine

(20 marks)

2. (a) Explain the following terms with examples:

(i) Alphabet (ii) Strings (iii) concatenation (iv) reverse of a string (v) length of a string

(vi) Empty string (vii) Derivation of sentence (viii) Sentential form (ix) Positive closure

(b) Convert the transition table below to DFA

	ล	b
{1, 3}	{1, 3}	{2}
{2}	{2, 3}	{3}
{2, 3}	$\{1, 2, 3\}$	{3}
{3}	{1, 3}	φ
$\{1, 2, 3\}$	$\{1, 2, 3\}$	$\{2, 3\}$
φ	Ф	φ

(c) Construct a DFA which recognizes the set of all strings on $\Sigma = \{a,b\}$, starting with the prefix 'ab'.

(d) Construct a FA accepting all string over {0,1} having even number of 0's and even number of 1's.

3. (a) Design a DFA, $\it M$ which accepts the language $\it L(M) = \{w \in \{a,b\}^* :_{\sf W} \text{ does not } \}$ contain three consecutive b's}.

Let M = {Q,
$$\Sigma$$
, δ , q_o , F}

Where:

Q = { q_{0} , q_{1} , q_{2} , q_{3} }, Σ ={a,b}, q_{0} is the initial state, F = { q_{0} , q_{1} , q_{2} , } are final states and δ is defined as follows:

Initial state	Symbol	Final state
q _o	а	q _o
q _o	b	q ₁
q ₁	а	q ₀
q ₁	b	q ₂
q_2	а	q₀
q_2	b	q ₃
q ₃	а	q ₃
Q ₃	b	q ₃

(b) Let M=($\{q_1,q_2,q_3\}$, $\{0,1\}$, $\{q_1\}$, $\{q_3\}$ is a NDFA where δ is given by

$$\delta (q_1, 0) = \{q_2, q_3\}$$
 $\delta (q_1, 1) = \{q_1\}$

$$\delta(q_1, 1) = \{q_1\}$$

$$\delta (q_2, 0) = \{q_1, q_2\}$$

$$\delta(q_2, 1) = \{\Phi\}$$

$$\delta (q_3, 0) = \{q_2\}$$

$$\delta (q_2, 0) = \{q_1, q_2\}$$
 $\delta (q_2, 1) = \{\Phi\}$
 $\delta (q_3, 0) = \{q_2\}$ $\delta (q_3, 1) = \{q_1, q_2\}$

- (i) Construct an equivalent DFA and draw the transition diagram
- (ii) Check whether the string '011010' is accepted by DFA and NFA

(c) Obtain the state table diagram and state transition diagram (DFA Schematic) of the finite state Automaton M = {Q, S, δ , q_o , F}, where Q = { q_o , q_1 , q_2 , q_3 }, S={a,b}, q_o is the initial state, F is the final state with transition defined by

$$\delta (q_0, a) = q_2$$
 $\delta (q_3, a) = q_1$ $\delta (q_2, b) = q_3$

$$\delta (q_1, a) = q_3$$
 $\delta (q_0, b) = q_1$ $\delta (q_3, b) = q_2$

$$\delta (q_2, a) = q_0 \quad \delta (q_1, b) = q_0$$

(20 marks)

- 4. (a) Construct a DFA that accept the language L = {010, 1} ($\Sigma = \{0, 1\}$)
- (b) Construct a DFA over alphabets {0, 1} that accept all strings that end in 101.

Hint: The DFA must remember the last 3 bits of the string it is reading.

- (c) Build an automaton that accepts all and only those strings that contain 101
- (d) Consider the following grammar:

$$S \longrightarrow SA/A$$

Show the left-most-derivation, rightmost, and derivation tree for the string

(20 marks)

5. (a) (f) Draw an NFA that accepts the language defined by the following grammar:

- (bi) Draw an example of a graph that has six vertices and six edges. Mark all simple cycles
- (bii) Draw an example of a tree that has seven vertices, five of which are leaves. How many
- (c For the alphabet $\Sigma = \{a, b\}$, draw a deterministic finite accepter that is equivalent to the

(20 marks)